Search results for "nano into micro strategy"

showing 3 items of 3 documents

Polyanion–tobramycin nanocomplexes into functional microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis

2016

Aim: Efficacy of antibiotics in cystic fibrosis (CF) is compromised by the poor penetration through mucus barrier. This work proposes a new ‘nano-into-micro’ approach, used to obtain a combinatorial effect: achieve a sustained delivery of tobramycin and overcome mucus barrier. Methods: Mannitol microparticles (MPs) were loaded with a tobramycin polymeric nanocomplex and characterized in presence of CF artificial mucus. Results & discussion: MPs are able to alter the rheological properties of CF artificial mucus, enhancing drug penetration into it and allowing a prolonged drug release. MPs resulted to be effective in Pseudomonas aeruginosa infections if compared with free tobramycin. Co…

Pseudomonas aeruginosa infectionCystic FibrosisPolymersmedicine.drug_classAntibioticsBiomedical EngineeringMedicine (miscellaneous)Bioengineering02 engineering and technologyDevelopmentBiologySettore BIO/19 - Microbiologia Generalenano into micro strategyCystic fibrosisCell LineNanocompositesMicrobiology03 medical and health sciences0302 clinical medicineAntibiotic resistancePseudomonas aeruginosa InfectionsmedicineTobramycinHumansMannitolPseudomonas InfectionsGeneral Materials ScienceDrug CarriersEpithelial CellsPenetration (firestop)021001 nanoscience & nanotechnologymedicine.diseasePolyelectrolytesMucusAnti-Bacterial AgentsDrug LiberationMucusmicroparticle030228 respiratory systemSettore CHIM/09 - Farmaceutico Tecnologico Applicativocystic fibrosis artificial mucuPseudomonas aeruginosaTobramycinMannitol0210 nano-technologyαβ-poly(N-2-hydroxyethyl)-DL-aspartamidespray dryermedicine.drugNanomedicine
researchProduct

Nano into Micro Formulations of Tobramycin for the Treatment of Pseudomonas aeruginosa Infections in Cystic Fibrosis.

2017

Here, nano into micro formulations (NiMs) of tobramycin for the treatment of Pseudomonas aeruginosa airway infections in cystic fibrosis (CF) are described. NiMs were produced by spray drying a solution containing polymers or sugars and a nanometric polyanion–tobramcyin complex (PTC), able to achieve a prolonged antibiotic release. NiMs properties were compared to TOBIPodhaler(Novartis), the only one commercially available dry powder inhalatory formulation based on porous microparticles. Produced NiMs showed adequate characteristics for pulmonary administration, as spherical shape, micrometric size, and high cytocompatibility toward human bronchial epithelial cells. Contrarily to TOBIPodhal…

Tobramycin Cystic Fibrosis Artificial Mucus (CF-AM) αβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA) ion pair complex nano into micro strategy Pseudomonas aeruginosa infections biofilmPolymers and PlasticsCystic FibrosisPolymersChemistry PharmaceuticalBioengineeringBronchi02 engineering and technologymedicine.disease_causeCystic fibrosisMicrobiologyBiomaterials03 medical and health sciences0302 clinical medicineDrug Delivery SystemsNano-Materials ChemistrymedicineTobramycinHumansPseudomonas InfectionsParticle SizeRespiratory Tract InfectionsCells CulturedDrug CarriersPseudomonas aeruginosaChemistryBiofilmDry Powder InhalersEpithelial Cells021001 nanoscience & nanotechnologyAntimicrobialmedicine.diseaseMucusPolyelectrolytesAnti-Bacterial Agents030228 respiratory systemSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSpray dryingBiofilmsDelayed-Action PreparationsPseudomonas aeruginosaTobramycinNanoparticles0210 nano-technologymedicine.drugBiomacromolecules
researchProduct

Inhalable nano into micro dry powders for ivacaftor delivery: The role of mannitol and cysteamine as mucus-active agents.

2020

In this paper the innovative approach of Nano into micro (NiM9 was developed to produce Nanoparticles loaded Ivacaftor to incorporate into mannitol or mannitol/cysteamine micromatrices for drug pulmonary administration in CF. Nanoparticles composed by a mixture of two polyhydrohydroxyethtylaspartamide copolymers containing a loading of Ivacaftor of 15.5 % w/w were produced. These Nanoparticles were incorporated into microparticles to obtain NiM that were characterized in terms of size and size distribution, interaction with CF-AM by rheological and turbidimetric studies as well as by aerodynamic diameter measurements. Finally the activity of Ivacaftor into these NiM was evaluated by in vitr…

Cystic Fibrosisαβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA) copolymer PHEA ivacaftor mucus-penetrating nanoparticle cell penetrating peptide nano into micro strategy. CysteamineDrug CompoundingPharmaceutical ScienceNanoparticleCystic Fibrosis Transmembrane Conductance Regulator02 engineering and technologyQuinolonesAminophenols030226 pharmacology & pharmacyIvacaftor03 medical and health scienceschemistry.chemical_compound0302 clinical medicineNano-Administration InhalationMucus-penetrating nanoparticlemedicineCopolymerAnimalsMannitolChloride Channel AgonistsCells CulturedExpectorantsCell penetrating peptideNano into micro strategyChemistry021001 nanoscience & nanotechnologyMucusRats Inbred F344IvacaftorCopolymer PHEADrug LiberationSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMutationNanoparticlesCysteamineMannitolPowders0210 nano-technologyPeptidesαβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA)medicine.drugNuclear chemistryInternational journal of pharmaceutics
researchProduct